I R.D. McDowall
Column Editor

i

eauen of el

Spreadsheets have found widespread use in most scientific
applications, as they are very easy to use for manipulating data.
Unfortunately, it is just as easy to make mistakes. Bob McDowall,
Chris Burgess and Bill Hardcastle discuss...

ou know the scenario, you're
walking through the laboratory
and pass a colleague working on a
spreadsheet on a PC. Looking over
their shoulder you notice that they're
working on a problem similar to the one
that you also have. Stopping to talk you
discover that the spreadsheet they're
using is just what you want*/can be
easily modified* (*delete whichever is
not applicable) and your colleague
e-mails or gives you a copy of their
spreadsheet on disk. What starts as
a spreadsheet for an individual, can
soon become a departmental standard
that everyone is using. Of course, this
doesn’t happen in your laboratory,
does it?

Ms_Calculation@ltsnotmyfault.guv
Let's roll back the clock to the time
when the spreadsheet was originally
written. The original purpose may have
been for a single individual to perform
some informal calculations. However, let’s
ask some simple questions:
« Is there a specification or similar
design document?
» Have the calculations been defined
and tested?
« Are the cells locked to prevent
changes to the calculations?

If the answer to any of these questions
is 'no’, you have a potential spreadsheet
problem on your hands.

Spreadsheet use must be controlled in
any scientific discipline. Although seen
as ‘restricting scientific freedom and
creativity’ (a poor argument at the best
of times), spreadsheets should be
controlled, otherwise the mistakes that
can occur from unrestricted, naive and
inappropriate use are far greater and can
impact both personal, laboratory and
organizational credibility far more than
if the spreadsheet is not controlled.
Don't believe us? Please read on...

The purpose of this column is to
highlight some of the problems that
can occur with the use of spreadsheet
applications and to offer advice on
how these might be eliminated, or at
least minimized.

Definitions
For the purpose of the discussion we
need to define the following terms.

» Spreadsheet: this is the program,
such as Excel, 123 or Quattro Pro.
The program is simply an empty shell
containing the basic calculation
functions needed to develop a
spreadsheet application.

« Spreadsheet application: consisting

VeV

of a particular instance of a
spreadsheet containing data,
together with operators or formulae
that act on that data. This can
include ‘macros’ (written in Visual
Basic or by capturing keystrokes) or
templates (your calculations are
embedded within a blank
spreadsheet, you retrieve the file,
rename it and enter your data).

= Application developers: persons who

write or encode spreadsheets.

« Application users: persons who use

the spreadsheets.

In practice, the developer and user may
well be one and the same person; this is
especially so given the ease with which
spreadsheets can be developed and used.

What is a spreadsheet?

An electronic spreadsheet consists of an
array of cells arranged on a rectangular
grid. The cells may contain numeric data,
text strings or formulae, and each cell
has a unique reference determined by its
location on the grid. Along with its
cellular structure, a spreadsheet also has
a large collection of operators and
functions for manipulating the contents
of the cells.

In addition, most modern spreadsheets
permit the user to combine these
operators and functions into new
routines — known as ‘macros’ — for
performing specific routine tasks. Once
assembled, a couple of keystrokes or a
single click of a mouse button can
invoke a macro at any time thereafter.
This combination of properties makes the
spreadsheet a very powerful tool for
processing data.

Spreadsheets can also have sort and
date calculation functions. This will be
discussed later with the Year 2000 issues.

Power to the user

One of the great attractions of the
spreadsheet in the eyes of many is that
it removes the need for people to become
programmers in order to get a computer
to process their data.

Who needs a professional programmer?
No point waiting around and writing
those User Requirements Specifications
(URS) — fingers on the keyboard and
away you go.

Once written, entering data is easy —
they can be typed straight into any of
the cells. Doing something useful with
data once they are entered is also easy,
thanks to the built-in collection of
operators and functions. The functions
act like mini-programs and allow the user
to ‘pick-and-mix’ in order to obtain the
desired results. These can range from:

* routine calculations

= exploratory data analysis

= model building

« ‘what if’ calculations.

Danger — thin ice

As with most areas of human endeavour,
power brings with it risks and dangers,
and spreadsheets are no exception. A
particular problem with spreadsheet
construction is that it can be an
undisciplined activity. The ease with
which formulae can be assembled makes it
tempting to put together an application
as quickly as possible — usually omitting
many of the elements of defersive coding
that a professional programmer would
include as a matter of course.

This can lead to considerable problems,
especially for laboratories operating
under quality management systems such
as Good Laboratory Practice (GLP) or
Good Manufacturing Practice (GMP), for
which it is necessary to be able to
demonstrate the validity of results
obtained using computerized systems.
Even for laboratories in which no such
formal requirement exists, it is within
the users own interests to be able to
provide evidence of the correct operation
of any computer system involved in the
production of analytical results.

As we saw in the introduction, when
you see a colleague using a spreadsheet
and it matches your needs, why bother
to write one yourself? Instead copy the
spreadsheet and compound the problem!

The spreadsheet program itself,
including the functions, will have been
designed and coded by a team of
professional programmers who will (or
should have!) followed a quality
assurance protocol for software
development. A program designer would
worry about questions such as what
happens if an input variable to my
function receives the wrong type of data?
For example, a function to raise a number
to a power would expect to receive two
numeric values — the number to be
operated upon and an exporent. If a user
were to type in text in place of one, or
both, of these numbers the function
clearly could not work.

Similarly, a function to extract a
square root would be expected to work
on positive numeric data but if supplied
with a negative number would be unable
to produce a result. If the programmer
were simply to ignore these potential
problems his code would be guaranteed
to crash when the problems eventually
arose (as they surely would) and bring
his program to an ignominious halt. To
avoid this happening, professional
programmers build in defensive code or
error-handling routines to test for
eventualities of this sort. Such code
generally alerts the user to the nature of
the problem and provides an opportunity
to recover from the error.

We said earlier that people did not
need to become programmers in order to
create spreadsheet applications. However,
this is not entirely true. In fact, anyone
who creates a spreadsheet application is
effectively writing an extension to the
spreadsheet program, customizing the
program for his or her particular purpose.
So anyone who creates spreadsheet
applications is actually engaging in
programming whether they realize it
or not.

The danger is that the casual developer
of a spreadsheet application may not
understand general computer
programming principles and hence could
unwittingly create problems for future

users of their application. It's a bit like
designing and building a house.

« An architect will produce drawings of
what the finished house will look
like, working within building
regulations and codes of practice.

« A builder will transform the diagrams
into the finished article, but will
liaise with the architect over
interpretation of specific design
issues. In addition, the builder will
dig the foundations to the correct
depth — as specified by the building
codes and design specifications.
Then the builder will fill them with
the appropriate material, again
specified in the design plans and
building standards.

« Independent inspections by
competent authorities will subject
the work to checks between the
design and practice, as well as
ensuring that the appropriate codes
of practice have been followed. These
inspections will be at critical stages
of the building; for example, after
digging the foundations, filling the
foundations, before the roof is put on
and a final inspection before
occupation (use) of the structure.

You can see how this equates to
quality software development.

In comparison, along comes the casual
developer who will be keen to get on
with the job and will not always see the
necessity of doing things that do not
directly impact on the problem at hand.
For example, why bother with the
architect? Also, you can build a wall
without foundations; however, it will not
stay up for very long. Such is life with
many spreadsheets.

For all the care they take, however,
professional programmers still make
mistakes and, despite all the testing and
inspections that are made, virtually all
professionally written software contains
anomalies, errors, bugs or ‘features’. For
the most part these errors are relatively
minor or manifest themselves only under

unusual circumstances — as the more
Jsdientific

serious errors should have been found
and corrected during the testing stage. If
it is so difficult for the professional to
write error-free code, it is not hard to
see how the casual application developer
can unwittingly create problems when let
loose in such a seductively simple
programming environment as a
spreadsheet. Getting worried? You should
be and we haven't yet mentioned the
contribution an application user can
make to the potential mayhem?!

No_Problems@ Itcanthappentome.
com
As we mentioned in the introduction,
these spreadsheet problems always
happen in other organizations.
Example 1: An organization automated
their dissolution calculations using a
spreadsheet. After submitting a licensing
application, someone thought it would
be a good idea to check whether the
calculations were correct. They were not.
A substantial report had to be written,
detailing the extent of the problem and
the impact of the error. This was then
submitted to the regulatory agency and
delayed the issue of the marketing licence.
Example 2: Purefac Pharmaceutical
Company was inspected by the Food and
Drug Administration in October 19942
who wrote the following observation in
the Form 483: “No written SOPs for
validating spreadsheet macros to
calculate potency for dissolution,
content uniformity and assay.
Documentation submitted by the firm to
show the validity of two spreadsheet
programs that were used to calculate
dosage uniformity by weight variation
generates inaccurate data. The relative
standard deviation calculation has a
+3% error that may be due to an
inaccurate formula or inaccurate step in
the programming process.” The follow up
investigation led to the issue of a
warning letter on 23 November 1994.

So, what can be done to limit the
damage? In essence, our concerns centre
on quality assurance. We need to have

VeV |45

confidence that the results produced by
the application are correct and fit for
purpose. Leaving aside the issue of
deliberate fraud and/or sabotage which,
fortunately are not that common, our
main concerns are with ensuring that an
application has been correctly
‘programmed’ and adequately tested, and
that a user of the application cannot be
misled by it into making mistakes. There
are thus three aspects to consider.

« Design: defining the scope and
calculations to set up a spreadsheet
application.

« Testing: does it work correctly as
defined in the design?

« Control: who can use it and who can
change it?

Design: No_URS@Dontdoit.com
Design covers anything that affects the
way an application appears to the user,
as well as all those things that affect the
way it works. So, deciding which cell to
put a particular datum in is a design
issue as is the way in which that cell is
to be formatted. Design factors have a
strong influence on the likelihood of
obtaining correct results from any
computerized procedure.

Incorrect results with spreadsheet
applications arise for a number of
reasons, the main ones being

« errors in the spreadsheet program’s

built-in functions

« mistakes by the application

developer in setting up or coding
the application

= mistakes by the user caused by

poor design

« carelessness on the part of the user.

There is not much a developer can do
about the last of these. Therefore, this
article concentrates on the second and
third (although if the developer becomes
aware of the first he may be able to
devise a workaround, hence the
advisability of extensive testing).

Deciding which cell to put a datum
in may seem trivial but it can
have important consequences.

Ly

A

Spreadsheet applications often extend
beyond the visible area of the computer
screen and, essentially, exist as virtual
surfaces with different regions of a
surface being brought into view by
means of the scroll buttons. When a
spreadsheet application is first loaded,
the upper left-hand corner is normally
displayed. With poor interface design, it
is possible for a new user to be misled
into thinking that all of the application
is contained within the initial viewable
area. This in turn can lead to them
omitting to enter required data in cells
located outside of the immediately
viewable area (it has happened!).

We suggest an overall map of the
spreadsheet as a first stage in the design
process that would highlight the key
stages of the calculations to be
performed (Figure 1).

* name, objective, version number and
procedure reference
« cell references for entering
experiment details
 standards used in calculations,
preparation details etc
 time points
» experimental observations
« calculations
= comparison against specifications,
limits etc
« overall results
« links with other spreadsheets etc.
The aim is to agree, on a single page,
the whole scope of the spreadsheet
calculation. In addition, all of the
functional needs should be written out,
especially calculations, in a URS®.
A note of caution, however, as
organizations become global, spreadsheets
don't. For organizations and individuals

Columen refemn oo eesher

wishing to develop global spreadsheet
applications, the following is a cautionary
tale. The UK version of Excel 97 is not
identical to Scandinavian versions, as two
of us have found running courses on
computerized system validation over a
number of years using an Excel
spreadsheet as an example. Calculations
that work well in the UK version do not
run correctly in Scandinavian versions of
the same program. Therefore, it is highly
unlikely that templates and macros will
migrate seamlessly across language
versions either. One way around this is to
agree on a common language version
across all sites. This is great in practice
but getting agreement first is difficult.

Titanic@Iceberg.com
With luck the developer should have
anticipated any problems regarding poor

Lt g

Ecperimont R cheervation

It e Vasalde 1

Rowy MO ANy

Figure 1 Outline spreadsheet design.

W e A

i HEECREHIND mference

Standards oreonstanks

a1 caaulation e

S Bl & o0 [i BE il B resaiE

Lo s Sy i e - s i I el 1S

entry of data, and the spreadsheet
application will generate an error
message and stop working. However, the
effect can be more insidious. As an
illustration, if a missing datum was
intended to be added to, or subtracted
from, the result of an intermediate
calculation, then it would simply result
in 0 (zero) being added or subtracted. In
other words the final result of the
calculation would only be a partial result
but this would not necessarily be obvious.
It is not possible to list all of the
potential problems that could arise as a
result of poor interface design and/or
coding. Even if such a list were possible,
it could never be complete. It is also
impossible, in an article of this length,
to provide a comprehensive guide to
spreadsheet design but, from the
example given, it is clear that the
casual application developer would
benefit from working to a set of
documented design principles?.

Avoiding_lceberg@Smartdeveloper.
com

To minimize any potential problems that
the finished application may cause for
the user, it is important to have a clear
view at the design stage of what the
application is intended to do and,
broadly, how it should do it — for
example, specify the algorithms it should
employ. This calls for a careful analysis
of the way the task is currently
performed or, if the task is a new one, of
how it should be performed. Existing
tasks are not always executed in the best
way possible (though they may once
have been given the resources available
at the time) and the design stage of an
application provides an opportunity to
introduce improvements.

A crucial aspect of design in relation
to software is to specify what is required
and, equally important, to write this
down in the form of a URS. Even if you
— the developer — will (at the moment)
be the sole user, it is important to record

what you intended to do. You never
Jscientific

know what data you or someone else
might apply to that application in the
future. You never know who will walk
past your workstation as you are using
the system...

While not wishing to suggest that
developers of spreadsheet applications
should all attempt to become fully
fledged computer programmers, we would
nevertheless recommend the adoption of
the following points of best practice.

 There should be a clear written
statement of what the application is
intended to do (URS). This should be
prepared before starting to build the
application. As well as guiding the
build, it can be used later to verify
that the finished application does
what it is intended to do.

» The application itself should be well
documented and macros in particular
should be liberally commented on. It
should be possible for anyone
competent in developing applications
for the given spreadsheet program to
come along, maybe several years
later, and rapidly gain a good
understanding of what the
application is supposed to do and
how it works.

 Calculations should be documented
when the spreadsheet application is
finished so that another programmer
or user can maintain it in the future.
For example, the way the time points
and observations are manipulated
will be documented as well as the
spreadsheet calculations that result.
For business critical spreadsheets, an
organization may want to document
individual cell calculations and any
limits and error trapping routines etc.

< Ideally, and especially for critical
systems, the application should check
that all input data are complete and
of valid type.

« Formulae employed in an application
should be documented (with
reference to relevant literature
sources) and validated as correct and
appropriate for the intended use.

VeV (A7

« Each application should have a
unique version number and should
also indicate the version number of
the spreadsheet program it was
developed on.

« Roles and responsibilities for the
user base are defined including the
security and access of each.

There are also some particular design

issues to think about.

= A spreadsheet should have a clearly
displayed title together with an
explanation of its purpose.

« To simplify the appearance of an
application, sheets that do not
accept manual data or present
output data (e.g., macro sheets)
should be hidden.

« If possible, all manually entered data
should be placed within the confines
of an initial sheet view. If data are
needed elsewhere, they can be copied
automatically elsewhere.

« If practicable, it is preferable to use
additional sheets for data input
rather than requiring the user to
scroll large distances to disconnected
regions of a single sheet.

= If the screen must be scrolled to
complete user input, then this should
be clearly indicated on the initial
page presented to the user (the users
can, for example, be directed to
specific cell addresses).

= User input cells can be distinctively
colour coded to assist recognition.
Preferably a single colour should be
used — one should avoid the
‘rainbow effect’ as this can defeat the
object of using colour. Of course,
none of your users are colour blind.

« Consideration should be given to
providing a separate notes sheet to
guide the novice user.

The general philosophy here is to
specify the system as fully as possible,
thereby making it as difficult as possible
for the user to make a mistake. This
involves giving careful thought to those
areas that might confuse a user and
designing accordingly. At the end of the

8

VeV

day there is no substitute for correct
definition of the requirements in a URS
and then testing against them. As wide a
range as possible of potential users
should be involved in testing and their
opinions sought before an application is
released for use. It is often the situation
that programmers/developers are too
close to their work to see the obvious,
and it is surprising how many useful
improvements can be suggested by people
not directly involved with development.

Testing@Safetynet.com

Having constructed an application it will
need to be thoroughly tested before
being put into use. One or two data sets
will of course have been used during
development but post development
testing needs to be more stringent. There
are several points to think about:

« The application should be tested
with data for which correct results
are already known.

« Several different test data sets
should be employed with data
spanning the range of expected
values, as well as testing any
boundaries and limits for data input.

« Where multiple conditional paths
through an algorithm exist,
particular attention should be paid to
testing the control logic at the
transition points.

» The outcomes of all tests should be
recorded together with any relevant
observations or comments.

Changes to one part of an application’s
code can lead to unexpected effects on
another part of the code. To check for
this, the application should be retested
with the test data sets whenever any
alterations are made to it.

Control (483_Observation

@ Itsnotmyfault.guv)

Control of spreadsheet applications is
important. Spreadsheet applications have
a tendency to growl. They are usually
developed, initially, to handle a
particular task, and their success in this

prompts thoughts of extending them for
other processing tasks. If, on the one
hand, the application has been well
documented, and the original developer
undertakes the extension, then it has a
good chance of being successful.

If, on the other hand, it is further
developed by a different person then the
likelihood of problems arising increases.
This is particularly so when the original
application is poorly or inadequately
documented. In either situation as an
application grows larger and more
complex the possibility for errors
increases. In addition to minimizing the
risk of errors being introduced into an
application as a result of further
development, control measures are also
needed to prevent accidental or
deliberate changes being made to the
application ‘code’.

As with the question of design, some
best practice principles for controlling
the use of applications can be stated.

» Spreadsheet applications should be
subject to conventional software
change control procedures. That is to
say, no changes to any working
application should be made without
permission from an appropriate
‘authority’. All requests for change
must be routed through this
authority together with
documentation supporting the case
for the requested change(s).

» After a change the application
should be carefully tested to verify
that the change does indeed do what
it is expected to do and that there
are no unexpected side-effects.

= Any change, however small,
requires that a new version
number be associated with the
altered application.

= A version history should be
maintained in an appropriate area
of the application.

= Consideration should be given to
protecting the application so that a
user can make alterations only to
cells specifically intended for user

input. Where deemed appropriate,
such protection should be reinforced
by means of passwords.

= Spreadsheet applications should be
set up as templates so that the same
initial, data-free, environment is
presented to the user on each
invocation. One should definitely not
load a previous instance of the
application and change the relevant
data — it can be virtually
guaranteed that one day a user
will forget to change a piece of the
old data.

« A periodic review of critical
applications to ensure that it still
operates under control of the
guidelines or regulations pertaining
to it.

» Spreadsheets migrated from one
version of the application to another
must be done very carefully. Look at
the release note to see what changes
have been implemented and the
extent of those changes. If you have
macros, the way of running may have
changed in the upgrade, which may
impact the way they run.

Spreadsheets and

Year 2000 conformity

When using dates with any computer
application, the best practice is to use
four-digit dates in all instances. Then
you'll need to know how your
spreadsheet handles dates and if it is
Year 2000 compliant.

How does your spreadsheet use date
windowing (the method of interpreting
the century for any two-figure year)?
There can be differences as shown with
the Excel spreadsheet.

« Excel 97 uses a date window of 30.
Any two-figure date entered that is
equal to or greater than 30 is treated
as 19XX. Any figure less than 30 is
assumed to be 20XX.

= Excel 95 and Version 4 (Office
Version 4.3) use a date window of 20.
Any two-figure date entered that is
equal to or greater than 20 is treated

as 19XX, any figure less than 20 is
assumed to be 20XX.

Thus, if you use two-figure dates and
date calculations, mayhem is assured
when you migrate from one version of
Excel to another as the date window has
been moved by 10 years. Only use four-
digit dates — you know it makes sense.

However, if you enter dates in a four-
digit date format, you can elect to
display the date as two-digits and all
calculations are correct — providing, and
this is critical, the developer uses only
four-digit date manipulation. The
problems arise when two-digit date
manipulations are used, and here you
will start to see the impact of the
windowing change if you are calculating
over the next 30 years or so.

Strangely, all versions of Excel
recognize 1900 as a leap year but only
for reasons of ‘backward compatibility’
(however, it is not stated if this is with
other applications or the programmers
who wrote the original version).

For many uses of a spreadsheet, dates
are typically used only as markers for
when the experiment or data analysis
was done. They can be embedded in the
header or footer for a printout or entered
into a cell with no further date
calculations. Many of these dates are two
digits and can be fixed by changing the
input cell or field. Where spreadsheets
are served centrally, the Information
Sciences group can help to ensure Year
2000 compliance by setting the default
date field to four digits. Globally there is
the old problem of different date formats
in the US and Europe. One way to
overcome this is to agree the date format
to be used globally, as at least one
organization has done, or to use US
military date format, for example,
31-DEC-1999, for no misunderstandings
or arguments.

Macros and templates can provide date
problems especially if the calculations or
manipulations use only two digits. Here
you run into issues of the version of

Excel the macro was originally written in
Jscientific

and if standard or non-standard
functions were used. Here you'll need to
test the macro to see what impact the
date changes will have. Don't forget to
include the leap year testing!

Interfacing with other
spreadsheets and data transfer
between other applications

Some spreadsheet applications can be set
up to pass data including dates to other
spreadsheets if required. Data import and
export can also use spreadsheets as a
transfer medium or for further
calculation. Here you'll extend your
investigations of date use to ensure that
only four-digit dates are used. The size
of the task will depend on the
complexity of the interfacing and if and
how date calculations are used.

Summary

The great versatility of spreadsheets
explains their enduring popularity, but
this very versatility hides a subtle
weakness in that it is all too easy for the
unwary to build faulty applications. By
paying careful attention to the way in
which applications are designed and built
and by controlling the way in which they
are used, it is possible to minimize many
of the common problems associated with
spreadsheet use. As a final form of safety
net, all users of spreadsheets should be
encouraged to apply the reality test and
ask themselves the simple question... ‘do
the results look reasonable?’

Acknowledgement

The preparation of this article was
supported, in part, under contract with the
Department of Trade and Industry as part of
the National Measurement System Valid
Analytical Measurement (VAM) Programme5.

VeV |49

References

1. R.M. Lindstrom and C. Asvavijnijkulchai, Fresenius
J. Anal. Chem., 360, 374, (1998).

2. The Gold Sheet, 30(7), (1996), F-D-C Reports Inc.,
Washington DC, USA.

3. R.D. McDowall, Scientific Data Management, 2(1),
8-19, (1998).

4. R.A. Coad, Lab. Pract., 41(12), 33, (1992).

5. J. Fleming, Anal. Proc., 32, 31, (1995).

Bob McDowall is Principal of McDowall
Consulting, involved in the design and
validation of LIMS systems and software
applications. He is also Senior Visiting Fellow
in the Department of Chemistry, University of
Surrey, UK, and a member of the Editorial
Advisory Board of Scientific Data Management.

Chris Burgess, an internationally recognized
expert in standardization and validation of
analytical instrumentation, is an analytical
scientist with over 20 years’ experience in the
pharmaceutical industry. Currently he is
Principal of Burgess Consultancy.

Bill Hardcastle is an analytical chemist
working at the Laboratory of the Government
Chemist. His interests include assessing the
quality of scientific software and attempting to

raise the quality of his own code.

