1 R.D. McDowall

wn up, we've all done it. It

happens in a number of ways; you

could be looking through a
computer magazine and see an adwert
for the latest software package. Before
you know it you're on autopilot: pick
up the phone with your credit card in
hand and the next day you're installing
the package on your PC. Does it work as
you expect? Probably not! Take comfort
in the fact that you are not alone. You
are not the first and you definitely
won't be the last.

What about the waste of software at
a higher level? What about your
organization? Every company has a
horror story that it keeps quiet about,
but the staff know how much money
and time were wasted on a software or
computer project. Rumour has it that
some companies have more than one
data-management project that has gone
down the tubes.

What about the waste of scientific
data systems on an even larger scale?
Governments certainly have larger
budgets and can make larger mistakes.
A study of US government software
contracts in the 1980s was very
enlightening!. This looked at nine
projects with a total value of US$6.75
million. The analysis showed that of the
taxpayers' money spent, the
software that was:

Never delivered = $2900 000

Never used = $3200000
Unaccounted = $350 000

Used after modifications = $200 000
Used as delivered = $100000

Thus, less than 2% of the total value
of all of the software was used as
delivered. (And you thought your
company was bad at delivering software
projects.) Why was so much money
wasted? The US study gives us a clue.
When the reasons for failure were
examined, three causes emerged:

epoor or misunderstood user

requirements

einability to cope with new

requirements (inflexible)

epoor or no user documentation.

Of the three, the majority (65%) was
the result of poor or misunderstood
user requirements.

Therefore, this issue's V&V column
will examine the role of the user
requirements specification (URS) in
defining what the end user needs and
wants from a software package. Before
we look in detail at the URS, we need
to stand back and have an overview of
the whole system develop-ment life
cycle to ascertain where this document
fits in and how it drives and controls
the whole process. In future V&V
columns, we shall also return to
discuss various aspects of the
life cycle.

MARCH 1998

VsV

t doesn't work

Systems Development Life Cycle

(SDLC)

The development of any computer

system or software package should

follow a life cycle. There are different
models available, such as a waterfall.

Figure 1 is based upon the 1SO V mocel.

The activities on the left represent the

design activities and those on the right

the testing activities to ensure that the
design has been achieved.
The different stages of the life cycle are:
«Concept: the idea for the system.
*Requirements: what the users of the
system want from the delivered
system.

= Design: designing the software
modules and overall system
architecture.

*Build: pogramming the modules.

«Test: testing the modules;
assembling and testing the modules,
units and their integration; and
structural testing the whole system.

«Qualify or User-Acceptance tests:
check that the delivered system
matches the user requirements.

«Maintain: operate, enhance and
maintain the system (this may
repeat some or all of the phases of
the life cyck).

eRetire: Planned retirement of the
system and transition or archive of
the data and users to the
replacement system.

dﬁiﬁwmanagement

Straight flow or feedback loops?
What is not shown on the diagram are
the feedback loops between the different
life-cycle phases. There is not usually a
clean cut-off between each phase of the
life cycle (i.e., one phase ends and the
next one starts). Usually, there are
questions raised in the next or later
phases, if the information or description
written down in an earlier phase is not
clear enough. We shall return to this
later in this column.

Obviously if there are a sufficient
number of problems it will delay the
project and increase the cost. This is
compounded by the fact that the further
a problem or unresolved issue goes

through the life cycle, the greater its
impact and the cost of resolution. An
alternative scenario, especially when
users are not available, is that the
programmer interprets what he or she
thinks the user wants, to save time.
Inevitably, this is wrong and leads to
further problems.

Therefore there are two issues:

«The need to specify the system
requirements in sufficient detail to
resolve ambiguities

*Writing the requirements in a
language that can be understood by
both users and computing
professionals.

figure 1 The System Development Life Cycle.

VsV

The way forward
The way of meeting both requirements is
via a user requirements specification
(URS). This document is your map and
guide through the SDLC. Without it you
are lost. Without sufficient detail, you
take a very slow and very expersive
scenic tour through the life cycle. For
your sanity and your company's cash
flow, the better the URS, the quicker the
system will be to develop, or select, and
then implement. The best advice,
therefore, is to spend as much time on
the URS as possible; it will ensure the
best payback.

Traditionally, the spend distribution on

off-the-shelf commercial products are
selected, evaluated in detail, and any
enhancements defined.

«Reduces the system-development
effort and costs, as careful review
should reveal omissions, misunder-
standings and/or incorsistencies in
the early development or selection
phases, at a time when these errors
are easier and less expenrsive to
correct.

< Provides the input to user acceptarce
test specifications and/or
qualification of the system.

< Provides input to the implementation
plan as the project team will know

URS should represent a binding agreement between the
customer and the developer or vendor about the overall
characteristics of a computerized system.

a project is about 10% of the cost on
designing, 40% on developing and getting
the system running, and 50% on
supporting it throughout the operating
life. More time spent on the design will
reduce the time and resources spent on
the operation phase making it more cost-
effective. This, in turn, will reduce the
overall operating costs of the system.
A well-written URS provides several
specific benefits2-3. This is because it:
«Serves as a reference against which

the type of system, either commercial

or do-it-yourself, that will be chosen.
e Facilitates a controlled and verifiable

continual process of enhancement.

General guidelines for a URS

A URS defines clearly and precisely what
the customer wants the system to do, and
should be understood by both the
customer and the supplier. In this
context the customer can be a company
or the user, and the supplier can be an

internal programming or computer group,
or a commercial supplier. For some
systems, the customer and supplier can
be the same organizational unit or
individual. The URS is a 'living' document,
and must be kept updated according to a
change control procedure throughout the
computer system life cycle.

A URS defines the functions to be
performed, the data on which the system
will operate, and the operating
envionment. The document also defires
any non-functional requirements,
comstrints such as time and costs, and
what deliverables are to be supplied. The
emphasis is on the required functions and
not the method of implementing those
furctions, as this may be the
identification of a solution.

If helpful, the requirements entered in a
URS may be based on experience of a
prototype system. Some characteristics of
the final system can then be taken directly
from the prottype, whereas other
requirements can be ascertained by running
experiments on the prototype. Prior to
authorization, the URS will often undergo
refinement. Selection of capable suppliers
and vendors is critical at this stage.

When associated with an Invitation to
Tender, the URS should be free from
proprietary information or technology-
driven requirements. The URS must be
reviewed to meet standards when
reaching completion.

T systam shall sapport ba-codes”

P G a

P anatlty

L)

AR Dt Friod Gzasion

figure 2 Breaking a concept into a user requirement.

MARCH 1998

Nature of the URS
The following basic issues should be
addressed:

< Functionality: What is the system or
function supposed to do?

< External interfaces: How does the
system interact with users, hardware
or software?

« Performance: What is speed,
awailability, response time, etc. of
the various functions of the system?

e Attributes: What consicerations are
given to portability, correctress,
maintainability, security, etc?

< Design constraints imposed on an
implementation: Are there any
required standards in effect, resource
limits, etc?

< Prioritization: All requirements
suggested by various users should be
ranked for importance. Are the
requirements essential (i.e., are they
compulsory for the system to operate?)
or desirable (i.e., simply nice to
have?). Will they be permanent
features throughout the lifetime of the
system, or dependent on future events
or scientific equipment?

The URS should represent a binding
agreement between the customer and the
developer or vendor about the overall
characteristics of a computerized system.
However, this rarely happens and the
purchasers can leave themselves open to
poor delivery times or a poor quality
product.

Writing the specification
These guidelines should be followed during
the production of the specification2-3:

= Each requirement statement should be
uniquely referenced and no longer
than 250 words.

« The URS should be consistert.
Therefore, requirement statements
should not be duplicated or
contradicted.

« Express requirements and not design
solutions.

« Each requirement should be testable
(this allows the tests to be written as

d4fa management

soon as the URS is finalized).

» The document must be understood by
both customer and supplier. Thus,
ambiguity and jargon should be
awided, or if used, key words should
be defined in a specific section in the
document.

« Ideally, the requirements should be
prioritized as mandatory or desirable.

« The URS should be modifiable. There
may need to be a formal review of the
URS between the customer and
supplier to check understanding and
that requirements have been met (or
not) in the Functional Specification or
Design documents. Changes should be
under a formal control procedure to
avoid 'creeping functionality' and an
unworkable design.

= Any requirement must be traceable to
earlier documents and to docunments
that are derived from the URS (e.g.,
design documents or testing plans,
etc.).

A URS is correct if every requirement
stated has only one interpretation and is
met by the system. Unfortunately, these
are very rare documents.

Organizing requirements

As the finalized URS tends to be extersive,
careful consideration should be given to
organizing requirements in the easiest
manner to understand. There is no one
optimal organization for all types of data-
management systems. Different classes of
systems lend themselves to different
organization of requirements. Some of
these are described below?:

= System Mode: organize requirements
according to system mode (training,
service, production, emergency, etc.).

« Workflow: describing the features in
relation to the process that you are
automating.

« User Classes: organize requirements
according to the privileges each user
class is assigned (maintenarce,
operators, etc.).

« Objects: organize requirements in
accordance with object attributes

VeV |

(printers, fermentation vessels, etc.).

«Feature: organize requirements to
describe the desired services provided
by the system (entry of samples to
the system, or results, etc.). This is
one of the most common ways to
organize a URS.

= Stimulus: organize requirements to
describe how each stimulus (input) is
supposed to be dealt with (power loss,
hardware interrupts, software alarms,
etc.).

«Response: organize requirements to
describe all the functions needed to
gererate a specific response (output),
(gereration of a packing list, opening
a pressure relief valve, etc.).

e Functional hierarchy: the overall
functionality can be arranged into a
hierarchy of functions organized by
common inputs, common outputs, or
common internal data access. Data
flow diagrams and data dictionaries
can be used to show the relatiorships
within the functions and data.

More than one of these techniques may
be used together to clarify what is
required, for example, a workflow with
security can explain how best to ensure
data security and integrity.

Go with the workflow
The best framework for writing a URS
for many data-management systems is
to follow the process or workflow that
the data system will be automating.
Here, there may be some difficulty as
most organizational units are based
around specific functions, and a process
will go across functions. These
organizational silos are like medieval
empires: this is the job that we do and
nothing more, when automating across
these boundaries it is inevitable that
resistance will be encountered. (This
brings one more problem for
management and the project team to
handle.) Therefore, if you have mapped
the process, this makes an ideal prompt
for the URS.

Alternatiwely, if the process is

i unipuely refesenoed?
L Juimame i

ith

Arg the requirenents
W 1 Siem ks

I5 | tastebia?

Friorh ized funetions?
[:I"'" J Adzi 3

mand
xrd] spdatad:

Improved user requirements specification.

MARCH 1998

15 it modiifiable?
EE P 0T e

Dies I express requirements?

o5 Thers ic ne mantien ofthews

inlamended.

B it congistent and camnol e
ok radictad?

mapped, you have a choice between
data T management

automating the status quo, or
redesigning or simplifying the process
before automating. Simplification of the
process will allow greater benefits of
automation through the use of
information technology. Alternatively,
if the process is a mess and you
automate it, the outcome is very
simple: an automated mess. Think
carefully before automating the
status quo.

VeV |9

«If you are working in a regulated
environment, how can you qualify
or validate this system?

Let's judge the adequacy of this
statement by comparing it with the
guicelines listed above:

1. Is it uniquely referenced? No.
2. Is it consistent and cannot be
contradicted? No.
3. Does it express requirements? No.
4. Is it testable? No.

The use of prototyping or rapid application development

(RAD) does not eliminate the need for defining the user

requirements. In fact, the use of these methodologies brings

users and developers closer together

What does this mean in practice?
This idea of documenting what we want
in sufficient detail sounds great, but it
means more work, doesn't it? Yes, this
is true, but consider the benefits. The
more time you spend in the
specification and design phase getting
your ideas and concepts right the
quicker the rest of the life cycle will go
as you know what you want. You will
get a system package that meets your
requirements more fully and there will
be less discussion later in the life cycle.
Contrast this to a package selection
with no user requirements. (This bit
should be easy as we have all done it.)

A specific example
To illustrate the problem, let's look at a
real example from a URS. The URS
states succirctly:
‘The system shall support bar-codes'
This sounds very impressive doesn't it?
We can have a scientific system that is
up to the technological level of the
local supermarket. But wait a minute:
How do we select a system based on
this requirement?
<How do we test the final system
when delivered or written?

5. Is it unambiguous? No.
6. Prioritized function? No.
7. Is it modifiable? Yes!

8. Is the requirement traceabk? No.
The key factors to look at are, 'is there
sufficient detail?", 'is it unambiguous?',
and, 'can it be tested?' Here the
requirement fails miserably.

What we have above is a statement of
need not a user requirement. This need
is capable of many interpretations and
also many misinterpretations. It is
certainly capable of many
misinterpretations that will be the
cause of many costly enhancements if
implemented in this system.

This genreral approach has resulted in
many poorly designed data-management
systems. Put yourself in the position of
the programmer or systems analyst
resporsible for the interpretation of
this specification. How far could you
progress on writing or programming the
system? On the one hand, not very far
because there is no detail. Or,
alternatiwely, and here is a major
problem, this statement is interpreted
by the analyst without reference to the
user and you get a totally unsuitable
system.

A

How can we get it right?

Using Figure 2 as a reference, let's look
and see how we can improve the
requirrments. In the guide for writing a
URS we discussed the following areas
that should be addressed to improve the
requirement:

1. Functionality: The bar-codes are used
by the system to gererate labels for
samples rather than just 'support bar-
codes'. Moreover, are the labels to be
limited to just samples? Do you want to
include labels for reference materials,
locations (both storage locations and the
individual shelves inside), or equipment
that may need calibration or maint-
enance as well as samples? It may be
that chain of custody is important and
location is a requirement that will
feature highly in this data system and
be linked with time delays or cumulative
time. The size of the label should be
stated along with the types of
information that should be on the label
itself. Remember the number of humans
that can read a bar-code accurately is
relatively low and you should include at
least some written information on the
label. You must specify this in the URS
as this will affect the label stock and
the printer type that will be supplied.
However, a bar-code is more than a
method for sample identification. You
can encode data-entry information into
a bar-code and use this instead of a
keyboard for operating an application. Is
this a requirement in this application?
2. Attributes: Do you want static or
portable bar-code readers? This will
depend on the type of work you are
doing. If you need portable bar-code
readers, should they be on-line or off-
lire?

What type of contairers will you be
sticking the labels on? Is there a flat
surface or a curved one?

How robust do the readers need to be?
Will they be used in the middle of the
North Sea or in a benign laboratory
envionment? Is contact with the sample
acceptable or, in the case of biological

samples (such as with hepatitis), to be
discouraged?

3. Constraints: There may be a number
of constraints on the use of bar-codes.
This may stem from the use of existing
corporate bar-code standards and will
have to be incorporated into the new
system. This is a constraint that must be
stated. Otherwise, a system could be
purchased that does not conform to the
corporate standard.

The temperature range that the labels
will be used in must be stated as this
may be a constraint. Within a relatively
narrow temperature of 4-25 °C there
may not be a problem with what is
supplied by a vendor. However, if the
sample has to be stored frozen at -20,
-40, -80 or even -180 °C, how would this
impact the delivered solution?

The environment that the labels will be
used in may also be a constrint. For
example, condensation, atmospheric
conditions, heat and sunlight will affect
thermal labels.

4. External interfaces: Are there any
other systems that the bar-code labels
will need to be interfaced to?

5. Performance: If the bar-code reader
is to be on-line the performance of the
system will need to be rapid. If the
readers will be used off-line, the system
performance will not be critical.
However, the reader will need to be
robust to ensure that data collected off-
line are not lost because of reader
failure.

6. Prioritization: Is this a requirrment
that is mandatory or just nice to have?

Having read this section, is the
statement: 'The system shall support
bar-codes' specific and unambiguous? Of
course not! Now you know this, what are
you going to do about it?

A specific example: take two
Figure 3 shows a better URS concerning
the use of bar-codes within the data
management system. In this example,
we judge the adequacy of this updated
URS by comparing it with the

guicelines listed above.

The URS in Figure 3 is definitely an
improvement on the one originally
discussed. However, there can still be
problems when it comes to inter-
pretation. The above section of the URS
is not perfect. We still have to make
assumptions about:

«the nature of the surface of the
container we are sticking the labels
on;

«do we want static or portable
readers?

«do we require on-line or off-line
readers?

erobuwstness of the readers could be
inferred from the laboratory
conditions but should be stated;

«if there is a company-wide system
for bar-codes will there be other
external systems to interface with?

*no statements of performance have
been made.

So what looks to be an improved URS is
not ideal but is better than the first
attempt.

Ideally, to improve the quality of the
draft URS, it should be read and
challenged by users and others who have
not been involved in the writing of the
document. This will take time but, in my
opinion, will be time well spent.
However, there are alternative ways to
ensure the user requirements have been
defined. This involves prottyping.

Impact of prototyping on the URS
The use of prototyping or rapid applic-
ation development (RAD) does not
eliminate the need for defining the user
requirements. In fact, the use of these
methodologies brings users and
developers closer together to define and
refine system requirements, which
should help reduce the number of
systems that are not fit for purpose. Any
steps in this direction are to be
wekomed and encouraged.

You should realize that when using
prototyping, the traditional life-cycle
phases are merged and will even overlap.

MARCH 1998

In some industries, there is a need for
a formal proof that the system works as
specified, such as in the pharmaceutical
and agrochemical indwstries. Here
prototyping is a means of defining
requirements, but after the probotype
has been finished the specification must
be written and approved.

There are two basic approaches to
prototyping. The first is to use an
urstructured approach to develop user
requirements in which functions are
developed rapidly. This produces a
system that has outline functions from
which the URS can be written in the
confidence that the requirements match
the user expectations. It is important to
realize that the programs are not robust
and the code will contain many errors.
Management must also realize that the
system is not complete. The prototype
system must be discarded and a new one
written based on structured
programming standards and formal
testing.

The second approach uses structured
programming standards from the start
and works in an iterative way to develop
the final system. There is an initial URS
followed by a prototype, this provides
the input to update the specification
and the development of a new
prototype. This goes on until the system
is developed. As the system has been
written in a structured way, the system
is now ready for testing once the URS
has been updated to reflect the accepted
prototype.

Role of the URS in validation

In some industries, such as the
pharmaceutical, medical device and
agrochemical, and in laboratories
working under I1SO guide 25, software
must be validated to demorstrate that it
is fit for its intended purpose. One
definition of validation is from the Food
and Drug Administration (FDA) and this
states: "Establishing documented
evidence which provides

a high degree of assurance that a specific

d4fa management

process will consistently

produce a product meeting its
predetermined specification and quality
attributes"4.

The key concepts in this definition
are:

«documented evidence

<high degree of assurance

«corsistency and reproduwibility

e precetermined specification.

Note the last requirement: predeter-
mined specification. This means that if
you work in a regulated industry and
don't want to write a URS to get the
right system or protect your investment,
you'll have to write one to validate the
system.

Last year, the FDA published a draft
guidance on Principles of Software
ValidationS. This is intended for medical
devices but the document describes
common principles of software
validation. It should also be remembered
that the document is intended for
medical devices that can have life-
threatening consequences with, what a
large software company call, a ‘feature’,
and the rest of us call a 'bug' or an
‘error'.

The docunment states succinctly: "To
validate software, there must be
predetermined and documented user
requirements specifications”. This is a
very clear statement that a URS is a
mandatory document when validation is
corcerned.

Elsewhere in the document there is a
further statement: "A software
requirements specification document
should be created with a written
definition of the software functions to be
performed.” It is not possible to validate
software without predetermined and
documented software requirements.
Typical software requirements specify
the following:

«all inputs that the software system

will receive

«all outputs that the software system

will produce

«all functions that the software

VeV [11

system will perform

«all performance requirements that
the software will meet, e.g., data
throughput, reliability, timing, etc.

«the definition of all internal,
external and user interfaces

ewhat constitutes an error and how
errors should be handled

«the intended operating environment
for the software, e.g., hardware
platform, operating system, etc., (if
this is a design constrint)

«all safety requirements, features or
functions that will be implemented
in software

«all ranges, limits, defaults and
specific values that the software will
accept.

There is a further requirement in the
Quality System Regulation [Title 21,
Code of Federal Regulations, Chapter
820.30(c)]¢ that, "rquires a mechanism
for addressing incomplete, ambiguous, or
conflicting requirements. Each software
requirrment documented in the software
requirrments specification should be
evaluated for accuracy, completeness,
corsistency, testability, correctress, and
clarity."

Furthermore, "A software requirements
traceability analysis should be conducted
to trace software requirements to system
requirrments (and vice versa). In
addition, a software requirements
interface analysis should be conducted,
comparing the software requirements to
hardware, user, operator and software
interface requirements for accuracy,
completeress, consistency, correctness,
and clarity, and to assure that there are
no external incorsistercies. In addition
to any other analyses and documentation
used to verify software requirements, one
or more Formal Design Reviews (a.k.a.
Formal Technical Reviews) should be
conducted to confirm that requirements
are fully specified and appropriate, before
extersive software design efforts begin.
Requirements can be approved and
released incrementally, but care should
be taken that interactions and interfaces

2

VsV

among software (and hardware)
requirements are properly reviewed,
analysed and controlled."

Remember when you read these draft
guicelines that we are dealing with
medical devices (including software
itself) that could have life-threatening
corsequences as a result of an error.
However, we can now see a regulatory
body getting to grips with software in
sufficient detail.

Worried about this approach? This is
basic common sense and good
computing practice that most of us
forget when time pressures are on us.
Remember also, where we started this
article: discussing the nine US
government software contracts in which
65% of the money was wasted because
of poor, or misunderstood, user
requirements specifications. Are you
now convinced of the need for a URS?

Summary
The bottom line is that a well-written
user requirements specification will be
time and resource well spent. The
alternative is quite simple, just repeat
the following words, 'but we don't
actually work this way' every time you
look at the functions of the delivered
data system. Then practise kneeling
and asking for money from your boss
to pay for the enhancements you will
need to get the system working.

In fact, Lewis Carroll, in Alice In
Wonderland got it right:
"Where are you going?" said the cat.
"I don't know," said Alice.
"In that case," said the cat, "it does
not matter as you will probably end
up somewhere else.”

Fine in fiction, but would you do
this in practice with a computerized
system? Of course you would!

References

1. A.Mihandru, in Proceedings of the 3rd
International Conference on Computers and
Communications, IEEE Computer Society Press,
Silver Spring, Maryland, USA, 1984.

2. |IEEE Recommended Practice for Software
Requirements Specifications, |IEEE Standard 830-
1993, in Software Engireering Standards, 1994
Edition, Institute of Electronic and Electrical
Engireers, Piscataway, New Jersey, USA, 1994.

3. Appendix A: User Requirements Specifications,
Good Automated Manufacturing Practices (GAMP),
May 1996, International Society for Pharmaceutical
Engireering, Tampa, Florida, USA.

4. Guideline for Process Validation, May 1987, Food
and Drug Administration, Maryland, USA.

5. Gereral Principles of Software Validation, Draft
Guidance for Industry, June 1997, Food and Drug
Administration.

6. Quality System Regulation, Title 21, Code of
Federal Regulations, Chapter 820.30(c), 6 October
1996, effective 1 June 1997.

Bob McDowall is principal of McDowall
Corsulting, and is involved in the
specification and validation of data-
maragement systems and software
applications. He is also visiting senior
lecturer in the Department of Chemistry,
Uniwersity of Surrey, UK, and is a member of
the Editorial Advisory Board of Scientific
Data Management.

MARCH 1998

