
any publications
and books have
been written about
computer valida-

tion, but several of them pro-
vide insufficient information
about the design and detail of
what tests to carry out in the
performance qualification (PQ)
phase, how PQ tests are written,
and how these tests are docu-
mented. This column will dis-
cuss how to identify some of the
tests to apply to spectrometry
software, how to write the test
procedures and instructions,
and how to execute the actual
testing.

Introduction
In the previous installment in
this series, I described the PQ of
spectrometry software in gen-
eral terms (1), including an out-
line of the PQ test plan sections
and the test scripts that specify
and document the tests to be ex-
ecuted. I also discussed, in gen-
eral terms, the three main areas
of system functionality that
should be tested in a system:
● scientific and instrument
functions,
● 21 CFR Part 11 technical con-
trols and functions, and
● backup and preservation of
electronic records.

The goal for this installment
is to give you more detail about
how PQ tests should be de-
signed, written, and executed.

MM

www.spectroscopyonl ine.com22 Spectroscopy 18(7) July 2003

Moreover, how should the test-
ing be linked back to the re-
quirements documented earlier
in the life cycle for the system
that we are validating? Because
there are many types of spec-
trometry software, I obviously
cannot go into detail about each
one, so I will select one of the
functions that should be com-
mon to all and outline the prin-
ciples here. I’ll then leave it to
you to develop the detailed ap-
proach for your specific system.

Testing Software Principles 
The principles of software test-
ing are shown in Figure 1. Test-
ing consists of a defining a series
of tests from the requirements
defined in the approved system
requirements specification
(SRS). From an individual re-
quirement, a test can be defined
for the software; this test will
have one or more expected re-
sults, along with defined accept-
ance criteria for the test regard-
ing passing or failing. We will be
conducting black box testing:
we usually do not know the de-
tailed algorithms employed by
the software, only the overall
function that the software will
perform. At the conclusion of a
test, compare the outcome with
the acceptance criteria: does it
pass or fail?

This is software testing in its
simplest form. It is not rocket
science, and a chemist with at

Validation of Spectrometry Software
Part VI — Designing Performance Qualification Tests

R.D. McDowall

Focus on Quality

R.D. McDowall
is principal of
McDowall
Consulting
(Bromley, UK),
and ”Questions of
Quality“ column
editor for LCGC
Europe,
Spectroscopy‘s
sister magazine.
Address
correspondence
to him at 73
Murray Avenue,
Bromley, Kent,
BR1 3DJ, UK.

least a dozen neurons working
sequentially can learn this rela-
tively easily when given enough
time by management to do so.

But . . . You don’t want to test
each item individually, do you?
Elegance in software testing is
how many requirements you
can test, either simultaneously
or sequentially, in a series of
linked test instructions.

The quality of testing is not
just deriving tests to pass but
also tests to fail. Think about
common problems and how the
software you are validating will
cope with them.

Worst-case testing does not
mean the Martians have landed.
Be realistic and look at the sys-
tem you are trying to validate,
and design tests based around
these types of worst-case scenar-
ios — for example, computation
calculations that place a heavy
load on the processor, or largest
numbers of samples for analysis
in a batch. Besides, finding a
Martian with knowledge of
predicate rules and 21 CFR Part
11 can often take a long time.

Types of Software Testing 
Some types of testing that
could be carried out include the
following:
● Boundary test: the entry of
valid data within the known
range of a field; for example, a
pH value would only have ac-
ceptable values within 0–14.



www.spectroscopyonl ine.com24 Spectroscopy 18(7) July 2003

Focus on Quality

● Stress test: entering data outside of
designed limits; for example, a pH value
of 15 (This is an example of testing to
fail: how will the software cope with
this data?).
● Predicted output: knowing the func-
tion of the module to be tested, a
known input should have a predicted
output.
● Consistent operation: important tests
of major functions should have repeti-
tion built into them to demonstrate
that the operation of the system is
reproducible.
● Common problems, on both the op-
erational and support aspects of the
computer system, should be part of any
validation plan. The predictability of
the system under these tests should
generate confidence in its operation.

Defining, Documenting, and
Testing System Security
Requirements traceability is a key issue
in current computer validation best
practice. If the requirement is not speci-
fied, then you have not written the user
requirements specification correctly
and completely, have you? We’ll look at
system security, as this should be appli-
cable to all spectrometry software.

Is the Requirement You Are 
Testing Specified?
The basis for all PQ testing is the system
requirements specification and the in-
dividual requirements written therein.
There is a very simple way to determine
if the requirement has been written cor-
rectly: can you define a specific test
without having to assume anything? If
you can, the requirement has been writ-
ten correctly. If you cannot, the require-
ment is poorly written and capable of
many interpretations. An example of a
poorly written function: the system re-
quirement specification states that “the
application must have security func-
tions.” Explicit tests cannot be derived
from that statement.

User Types. More time and effort must
be spent defining the various user types
that are necessary. Typically this will be
a minimum of two, such as a user and a
system administrator/supervisor. Your
spectrometry software will usually have
a security module that the system ad-
ministrator will configure to allow the
different user types access to different
functions in the application.

User Privileges. Any discussion of logi-
cal security of an application should
first consider what each user could do
when they use any function. These are
the privileges associated with the user
of a function within an application.
This has a continuum that ranges from
the ability to undertake any function, to
being denied access. These privileges are
shown in Table I, and they are intended
to be generic. This continuum may
need to be tailored to any spectrometry
application in practice; for instance,
you may decide that an execute-only
function and a read–write are so similar
that, in practice, combining them
makes sense. Alternatively, the privilege
may not be implemented in the applica-
tion you have purchased or developed.

The functions available to each user
type need to be documented as either
part of the system requirements specifi-
cation, or reference needs to be made to
a standard operating procedure where
this information is located. One way of
accomplishing this is to define the re-
quirements in the form of a matrix of
function versus user type, as shown in
Table II.

Once your system is operational, the
system administrator should review ac-
cess rights of all individual users regu-Figure 1. Principles of designing tests.

User
requirements
specifications

Devise detailed
test instructions

based on
requirements

Assess if meets
acceptance

criteria
Application Observed 

results

URS requirements match application functions

Compare with predefined acceptance criteria

Compare with predefined expected results

Table I. Continuum of user privileges.
Access privilege Access rights
Zero-level No access rights, or access denied
Execute only User can execute functions accessed but nothing else
Read only User can only read the data accessed; cannot write or

append anything
Write only User can overwrite data
Read–write User can read or write as required
Append only User cannot change any data but can add additional

information
Administrator Full access rights to create, read, write, copy, and 

delete data



www.spectroscopyonl ine.com26 Spectroscopy 18(7) July 2003

Focus on Quality

larly, especially as they are trained or
are promoted — events that will result
in a change of user privileges.

Designing the Tests
Now that we have the requirements for
access control correctly specified, we
can start to design the tests that will
demonstrate whether or not the system
has been correctly specified and
configured.

Look at the definition of access rights
for each user type in Table II — you can
define a series of tests directly from this
table:
● A system administrator can perform
all account management and system
backup tasks (testing to pass)
● A user cannot perform account man-
agement or system backup functions
(testing to fail)
● A system administrator can perform
all sample analysis tasks (testing to
pass)
● A user can perform sample analysis,
including modification of methods and
running existing report (testing to
pass), but cannot create reports or
methods (testing to fail).

If the requirements are specified cor-
rectly, it is relatively easy to define tests
to demonstrate that they function
correctly.

Risk Analysis: Extent of Testing?
Some of you will ask, “How much is
enough?” Others will ask the corollary,
“What’s the minimum I can get away

with?” You need to look at the risk in-
volved with the system and the time
taken to test. The black (compliant) and
white (noncompliant) approaches can
be summarized as:
● The simplest way is to test every-
thing: all user types and all functions.
No regulatory comeback here, but no
work, either.
● Companies that come from the Clint
Eastwood school of computer valida-
tion (graduating as “Do You Feel
Lucky?”) will assume that the vendor
has tested everything, and nothing has
to be done.

Working in the laboratory, you must
consider the Good Manufacturing
Practice regulations: 21 CFR 211.
160(b): work has to be “scientifically
sound,” which comes as a disappoint-
ment to many. Therefore, consider the
documented arguments that you can
produce that can reduce the work of
testing the access control functions:
● The vendor has tested the basic soft-
ware system (better if backed up with a
vendor audit report)
● You have configured the software
within the boundaries defined and
tested by the vendor of the software
(configuration has been documented as
described in the previous section)
● Therefore, only test your configura-
tion of the system
● Do you test all or just representative
functions of the system? Even for high-

risk systems, I would suggest that you
only test representative functions.

Refining the Test Design 
Taking the view that we will only test a
representative selection of our config-
ured user functions, we can now de-
velop two test cases:
● A system administrator can create a
new user, create a method, analyze a
sample, and create a new report
● A user cannot create a new user,
method, or report, but they can analyze
a sample.

Now that we have designed the test
cases, we need to consider how to docu-
ment them.

PQ Test Documentation
I reiterate that the terminology I use is
derived from Institute of Electrical and
Electronics Engineers (IEEE) software
engineering standards; in your organi-
zation, the same things may be called
something else.

Key Test Script Sections
You’ll remember from the last install-
ment of this series (1) that a test script
consisted of a number of sections. The
key sections that I want to focus on are:
● Test procedure steps
● Expected results and acceptance

criteria
● Actual results

Building from these three areas, in

Table II. Defining user privileges for each user type.
Software function User System administrator

Account management
Create/modify/disable user accounts X
Create/modify user types X
Allocate users to user type X

Sample analysis
Create methods X
Modify methods X X
Run samples X X
Calculate results X
Electronically sign results X
Run existing report X X
Create report X
Electronically approve results X
System backup
Backup system to tape X
Recover from tape to system X

Companies that come 

from the Clint Eastwood

school of computer

validation (graduating as

“Do You Feel Lucky?”) will

assume that the vendor has

tested everything, and

nothing has to be done.



Which style is appropriate for your lab-
oratory? The detailed style is good if
you have high staff turnover and want
to retain consistency of execution; the
disadvantage is that if the user interface
changes, then you could face rewriting
the procedures to reflect this.

The terse style has the advantage that
it is quick to write, but also easy to as-
sume implicit tasks that are obvious to
the writer but not to the person execut-
ing the procedure. The issue is, can the
implicit steps be remembered the next

www.spectroscopyonl ine.com28 Spectroscopy 18(7) July 2003

Focus on Quality

my view, a test procedure should consist
of three main stages:
1. Test steps and expected results (de-
fined before testing starts), observed re-
sults, note log, pass–fail statement, and
who performed the testing (written
contemporaneously as the testing is
conducted).
2. Documented evidence. Not specifi-
cally required by IEEE standards, but
essential for collating information used
to support the testing for QA and regu-
latory inspectors’ review.
3. Acceptance criteria. These must be
explicitly stated and not implied, be-
cause they are in many qualification
documents.

Documenting Test Execution
Regulatory Viewpoint. The draft Part 11
validation guidance (2) that was pro-
posed to be withdrawn in February
2003 has a short section on test results:

5.4.3 How test results should be ex-
pressed. Quantifiable test results
should be recorded in quantified
rather than qualified (e.g.,
pass/fail) terms. Quantified results
allow for subsequent review and
independent evaluation of the test
results.

The question is, how do you interpret
this statement? Let’s look at my sug-
gested approach and see if you agree.

Documenting Test Execution Instructions
and Expected Results. One question often
asked is, “How much detail do I need to
put into the test execution instruc-
tions?” This depends on your com-
pany’s approach to risk, and the
amount of effort they wish to invest.
Again, from my perspective, the test
steps should be written for a trained
user, and not a novice, to execute. This
saves writing the embarrassing series of
instructions starting with: “Sit in front
of the workstation; press the ‘on’ button
and wait for the operating system to
boot . . . ” Don’t laugh; I’ve seen exam-
ples of this.

Therefore, write the instructions so
that a trained user can execute them. If
a user can come to one, and only one,
result, then the test steps have been

written correctly; if not, they need more
detail. The detail depends on whether
this is a new system being validated for
the first time, or an existing system
being upgraded and (re)validated.
Often these two will be different as the
user maturity and experience differs;
see Tables III and IV to see the differ-
ences between these two approaches.

Looking at the test execution instruc-
tions in Tables III and IV, one is written
in a very terse style for an experienced
user and the other in more detail.

Table III. Test script execution instructions written for new users of 
the application.
Test steps Expected result
1. The system administrator defines user User “Security” defined as
“Security” as user type “Guest” “Guest”
2. Log onto data system as user “Security” Access to the system
3. Enter “Configure System” and select Function window opens and
“Users” lists users
4. Select user “Security“ and select The properties window for user
“Properties” “Security” opens
5. Check in the General tab the
User Type field User type “Guest” displayed

6. Cancel to leave the Properties window Leave properties window
7. Attempt to access “Select ‘New Method’” 
from the “Method” menu Function not available

8. Exit “Configuration Manager” “Configuration Manager”
window is closed

9. Enter “Browse Methods” and
select a project The window for the specified
Name: _______________ Method opens
10. Verify that the selected Method
contains Results Method contains results

11. Select a result and select “Preview” A window opens, named “Open
in the drop-down menu Report Method”

Table IV. Test script execution instructions written for experienced 
users of the application.
Test steps Expected result
1. The system administrator defines user User “Security” defined as
“Security” as user type “Guest” “Guest”
2. User “Security” logs onto the system and
looks at his or her access privileges under User privileges of “Guest”
“Configure System” displayed
3. Attempt to access “Select ‘New Method’” 
from the “Method” menu Function not available
4. Enter “Browse Methods” and 
select a project The window for the specified
Name: _______________ Method opens
5. Access one of the results in the selected A window opens, named
Method and report results “Open Report Method”



Suggested Documentation. Table V
shows an outline that could be used to
incorporate the test steps, plus the ex-
pected results, plus the four require-
ments just mentioned. Again, the level
of detail that you should go to is a bal-
ance between time and effort; however,
I would strongly suggest that you write
the documentation not only for execu-
tion, but also for internal audit and ex-
ternal inspection. The effort will repay
itself repeatedly.

Collating Documented Evidence. During
the testing of the software, there will be
output from the system either in the
form of paper printout or electronic
records or, for some test steps, both.
These need to be retained and collated
together as evidence that the test script
was executed. To aid audit and inspec-
tion, there should be a section in the
test script to collate the various docu-
mented evidence together.

Has the Test Passed or Failed?
Explicitly Written Acceptance Criteria. A
weak point with most test scripts or
protocols is the lack of explicitly written
acceptance criteria. If acceptance crite-
ria are not written down before execu-
tion, how does a tester, the person who
will review the results, and even an in-
spector know if the tests have passed or
failed? The unwritten rule is that if the
observed results match the expected re-
sults, then the test has passed; however,
if this is not written down anywhere,
this approach is rubbish.

Document and approve the accept-
ance criteria for each test and compare
with the actual ones in a specific section
of the test script.

Your test scripts will consist of one or
more test procedures; at the end of the
document, summarize the results of
each of these, then state if the test script
passes or fails, and sign this.

Summary
In this column, I have gone through the
stages to ensure that the PQ testing is
specified and documented correctly.
The level of detail and risk is left to the
laboratory to determine, but many labs
can’t or won’t find the time and effort
to do the job correctly the first time.
After a visit from the regulators, the
time and effort is freely available the
second time around. Do the job prop-
erly, because compliance is always
cheaper the first time.

In the next installment, we will look
at writing the validation summary re-
port to document the whole of the vali-
dation effort before the system is re-
leased for operational use.

References
1. R.D. McDowall, Spectroscopy 18(4),

26–30 (2003).
2. ”FDA Draft Guidance for Industry, 21

CFR 11 Electronic Records and Elec-
tronic Signatures Validation,“ Food and
Drug Administration, Washington, DC,
2001. ■

www.spectroscopyonl ine.com30 Spectroscopy 18(7) July 2003

Focus on Quality

time the test script must be executed
again? This approach is best suited to a
multiuser environment where there is
sufficient experience to ensure that
the scripts are understandable by the
user base as a whole, rather than an
individual.

Regardless of the approach used, en-
sure that the test scripts are signed and
approved before they are executed.

Documenting Testing
Writing Observed Results. When the test
steps are executed, we need to know:
● Who executed the test?
● What were the observed results?
● Did the test step pass or fail?

Therefore, these questions need to be
incorporated into the outlined test
procedures.

In addition to the observed results,
there will be supporting evidence of
screen shots, printouts, and electronic
files.

Unexpected Results. It is rare that a PQ
test suite is executed without some is-
sues arising. These issues can come
from a number of causes:
● Misunderstood test instructions
● Incorrectly written test instructions
● Expected results written poorly (too

detailed or insufficiently detailed)
● Incorrectly set acceptance criteria 
● Software error found.

Regardless of the cause, the test script
needs to have a way to document and
resolve these issues. This is where the
note log is useful.

Table V. Test script with space to document the observed results and any test execution notes.
Observed Note Pass/

Test steps Expected result result log fail Initials
1. The System Administrator defines user User “Security” defined 
“Security” as user type “Guest“
2. User “Security” logs onto the system
and looks at his or her access User privileges of 
privileges under “Configure Systems” “Guest” displayed
3. Attempt to access “Select ’New Method’
from the “Method“ menu Function not available
4. Enter “Browse Methods” and 
select a project The window for the specified
Name: _______________ Method opens
5. Access one of the results in the A window opens, named
selected Method and report result “Open Report Method”


